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Abstract

3D and 2D gaze estimation share the fundamental objec-
tive of capturing eye movements but are traditionally treated
as two distinct research domains. In this paper, we intro-
duce a novel cross-task few-shot 2D gaze estimation ap-
proach, aiming to adapt a pre-trained 3D gaze estimation
network for 2D gaze prediction on unseen devices using
only a few training images. This task is highly challenging
due to the domain gap between 3D and 2D gaze, unknown
screen poses, and limited training data. To address these
challenges, we propose a novel framework that bridges the
gap between 3D and 2D gaze. Our framework contains a
physics-based differentiable projection module with learn-
able parameters to model screen poses and project 3D gaze
into 2D gaze. The framework is fully differentiable and can
integrate into existing 3D gaze networks without modifying
their original architecture. Additionally, we introduce a dy-
namic pseudo-labelling strategy for flipped images, which
is particularly challenging for 2D labels due to unknown
screen poses. To overcome this, we reverse the projection
process by converting 2D labels to 3D space, where flipping
is performed. Notably, this 3D space is not aligned with the
camera coordinate system, so we learn a dynamic trans-
formation matrix to compensate for this misalignment. We
evaluate our method on MPIIGaze, EVE, and GazeCapture
datasets, collected respectively on laptops, desktop comput-
ers, and mobile devices. The superior performance high-
lights the effectiveness of our approach, and demonstrates
its strong potential for real-world applications.

1. Introduction
Gaze estimation tracks eye movements to predict human at-
tention [13]. It is a highly applied research topic, where var-
ious application scenarios, such as intelligent vehicles [14,
22], VR/AR [25, 27, 30], and disease diagnosis [6, 33] de-
mand distinct and specialized gaze estimation solutions.

Recent gaze estimation methods primarily focus on 3D
gaze estimation [8, 35], wherein 3D direction vectors are
derived from facial images. Such methods exhibit high
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Figure 1. We introduce a novel cross-task few-shot 2D gaze es-
timation approach. Our method leverages a pre-trained 3D gaze
estimation network and few-shot 2D gaze samples to achieve 2D
gaze estimation on unseen devices. It contains a physics-based
differentiable projection module to bridge 3D and 2D gaze, along
with a dynamic pseudo-labelling strategy for 2D labels under un-
known screen poses. Our approach is both screen-calibration-free
and source-free, significantly expanding its application potential.

adaptability, facilitating straightforward application in di-
verse environments [37]. However, they present limitations
in practical applications, such as human-computer interac-
tion, where precise gaze targets are essential. Existing ap-
proaches often require post-processing to calibrate the pose
of interacted objects, e.g., a screen, and compute the inter-
section between gaze and objects [39]. This process poses
significant challenges, particularly for non-expert users.

Conversely, some methods directly estimate 2D gaze
within screen coordinate systems. Deep learning-based ap-
proaches utilize large training datasets to map facial images
to 2D gaze [4, 23]. However, these models are often en-
tangled with multiple device-specific factors. Traditional
approaches construct 3D eye models using prior anatomical
knowledge and fit these models with few-shot calibration
images [17]. Although such methods require specialized
equipment for precise eye tracking, they raise the question,
Can we achieve similar patterns within the deep learning
paradigm for quick adaptation across various devices?

In this work, we explore a novel topic, cross-task few-
shot 2D gaze estimation. We observe that 3D gaze esti-
mation has recently gained significant attention in the re-
search community. It is performed within 3D space, free



from entanglement with specific devices. These insights
suggest that 3D gaze estimation models would be a great
prior, similar to the 3D anatomical eye model in traditional
methods. Therefore, our approach aims to utilize 3D gaze
estimation as prior and adapt it efficiently for 2D gaze es-
timation. However, this setting introduces several signifi-
cant challenges, such as the domain gap between 3D and 2D
gaze tasks, unseen device settings, i.e., w/o screen calibra-
tion, and insufficient training data. We show a comparison
between our task with common methods in Table 1.

To address these challenges, we first propose a novel
framework to bridge the gap between 2D and 3D gaze esti-
mation. We decomposes 2D gaze estimation into two com-
ponents: 3D gaze estimation and gaze projection. We first
estimate 3D gaze from face images, and then project 3D
gaze onto a specific 2D plane to infer the 2D gaze. Unlike
existing methods that require screen calibration to obtain
the screen pose [1, 13], our framework includes a physics-
based differentiable projection module. This module mod-
els screen pose using six learnable parameters, i.e., rotation
and translation vectors that map screen coordinate system
to camera coordinate system. By implementing the projec-
tion in a fully differentiable manner, our framework enables
seamless integration of the projection module into any ex-
isting 3D gaze estimation model without changing its orig-
inal architecture. Furthermore, since the framework is fully
differentiable, it supports fine-tuning on 2D annotated data.

We further propose a dynamic pseudo-labelling strategy
for 2D label in our framework. Specifically, we perform
flipping on face images and aim to assign pseudo-label for
the flipped images. While this process is straightforward for
3D gaze annotations, it becomes more complex for 2D gaze
due to dependencies on factors like head position and screen
pose, especially the screen pose is unknown. To address
this, we perform dynamic pseudo-labelling during training.
In each iteration, we reverse the projection process using the
learnable screen parameters to convert 2D labels into 3D la-
bels. This allows us to perform flipping directly in the 3D
gaze space. A key insight is that flipping needs to occur in
the camera coordinate system, while accounting for a shift
in coordinate systems during training. To handle this, we
learn a dynamic transformation that maps the shifted sys-
tem back to the camera coordinate system, ensuring reli-
able pseudo-label generation. Additionally, we apply color
jittering during training, which does not alter the 2D gaze
labels, and minimize uncertainty across jittered images to
improve robustness.

Overall, our main contribution contains four-folds:

1. We explore the novel topic of cross-task few-shot 2D
gaze estimation. This topic not only extends the applica-
tion of 3D gaze research to the 2D domain but also pro-
vides a promising direction for real-world applications.

2. We propose a framework to bridge 3D and 2D gaze es-

Table 1. Comparison between our method with existing methods.
We introduce an unexplored task in gaze estimation, which aims to
adapt 3D gaze models for 2D gaze estimation with few-shot data.

Category Train Test
Cross
Env.

Cross
Task

Methods

3D Gaze Estimation 3D 3D × × [8, 12, 20]
2D Gaez Estiamtion 2D 2D × × [4, 23]

Personalize
2D 2D × × [18]
3D 3D ✓ × [24, 28]

Domain Adaption 3D 3D ✓ × [2, 3, 7]
Ours 3D 2D ✓ ✓ None

timation, which includes a physics-based differentiable
projection module with six learnable screen parameters
to convert 3D gaze to 2D gaze. By leveraging this frame-
work, we can quickly adapt a 3D gaze model for 2D gaze
estimation using only a small number of images.

3. We propose a dynamic pseudo-labeling strategy for 2D
labels in our framework. We reverse the projection using
learnable screen parameters to convert 2D labels back
into 3D labels and perform pseudo-labeling in the 3D
gaze space. Furthermore, we learn a dynamic transfor-
mation to address the shifted coordinate system problem.

4. We establish a benchmark for the cross-task few-shot
2D gaze estimation, and evaluate our method on three
datasets covering daily scenarios, including laptop,
desktop computer and mobile devices. The superior per-
formance demonstrates the advantage of our approach.

2. Related Works

2.1. Gaze Estimation
Gaze estimation methods are generally classified into 3D
and 2D gaze estimation based on output [13]. 3D gaze esti-
mation defines gaze as a directional vector originating from
the face toward gaze targets [11, 35]. It typically focuses
on enhancing accuracy and generalizability across diverse
environments. Related research spans several fields, includ-
ing supervised learning [8–10], unsupervised domain adap-
tation [2, 3, 7], feature disentanglement [12, 28, 34], etc.

On the other hand, 2D gaze estimation is primarily
applied in screen-based contexts, where gaze is repre-
sented as a pixel coordinate in the screen coordinate sys-
tem [4, 23]. Compared to 3D gaze estimation, 2D gaze
estimation is more directly applicable to human-computer
interaction [19, 26, 32]. However, it becomes entangled
with multiple device-specific factors, such as screen size
and camera-screen pose, which complicate generalization
across various setups. The adaptation of 2D gaze estima-
tion methods remains a notable research challenge.

Although these gaze estimation methods fundamentally
capture eye movement, the distinct differences between 3D
and 2D gaze annotations define them as separate research
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Figure 2. We propose a framework for the cross-task few-shot 2D gaze estimation. The framework contains a physics-based differentiable
projection module with learnable parameters r and t to model screen, and project 3D gaze into 2D gaze. The framework is fully differen-
tiable and can integrate into existing 3D gaze networks without modifying their original architecture. Leveraging this framework, we can
quickly adapt a 3D gaze model for 2D gaze estimation using only a small number of images.

areas. In this work, we propose a framework to bridge the
gap between 2D and 3D gaze estimation, enabling the direct
application of 3D gaze research to 2D gaze estimation.

2.2. 2D Gaze Estimation via Projection
It is typical to compute the intersection between 3D gaze
and a 2D plane for 2D gaze, a process referred to as gaze
projection in this work. The most common application is in
VR [15, 31], where the head-mounted display provides 3D
gaze estimation, and developers can easily obtain a plane
pose in VR space. They project the gaze onto this plane or
determine if it intersects for interaction.

This strategy is also used in deep-learning based gaze es-
timation methods. They calibrate the screen pose during the
post-processing stage and convert 3D gaze into 2D gaze on
the screen [13, 39]. Recently, some methods have attempted
to inject the projection into the deep learning framework.
Balim et al. [1] first require screen calibration to obtain
screen parameters and then model the projection process us-
ing the calibrated pose. Cheng et al. [14] focus on estimat-
ing gaze zones on vehicle windshields. They define a basis
tri-plane, project 3D gaze onto this plane, and then learn a
mapping from the interaction points to the gaze zone.

In our work, we model the full projection process by
defining the screen pose with six learnable parameters. The
projection module is parameter-efficient. More importantly,
our method does not require screen calibration, which can
be challenging for non-expert users.

3. Methodology
3.1. Task Definition
Given a pre-trained 3D gaze estimation network H3D (I;β),
which takes face images I as input and outputs 3D gaze di-
rection g, i.e., H3D : I → g, our objective is to develop
a 2D gaze estimation network H2D (I; θ). Using few-shot
training samples D = {(Ii,pi)}Ni=1, where N is the number
of training samples, this network estimates 2D pixel coordi-

nates p from face images, i.e., H2D : I → p. We consider
a restricted setting where: 1) the method is source-free, as
the training set of H3D is unavailable, and 2) it is screen
calibration-free, with the screen pose unspecified. These
restrictions make our method convenient for practical ap-
plications while upholding data privacy.

3.2. Physics-Based Differentiable Projection
Our work aims to learn a new H2D using few-shot samples.
The primary challenge lies in transferring knowledge from
H3D to H2D. However, the two networks perform different
tasks, making some conventional methods such as feature
distillation unsuitable. To address this, our idea is to decom-
pose the 2D gaze estimation into 3D gaze estimation and
gaze projection. Specifically, we incorporate H3D as part of
H2D, supplemented with an additional module for project-
ing gaze directions onto a 2D screen. Unlike existing gaze
projection strategies that often rely on post-processing [13]
or require screen calibration [1], we introduce a physics-
based differentiable projection module. This module mod-
els screen pose as learnable weights, enabling the projection
process to occur in a differentiable and adaptable manner.

In detail, we define learnable weights r ∈ R3 as the ro-
tation vector and t ∈ R3 as the translation vector within
the projection module, establishing the transformation from
the screen coordinate system to the camera coordinate sys-
tem. To transform r into the rotation matrix R ∈ R3×3, we
apply the Rodrigues formula, which preserves the orthog-
onality of R so that R ∈ SO(3). The input of projection
module contains gaze direction g ∈ R3 and the 3D position
of the face center o ∈ R3, the latter of which can be com-
puted using existing 3D landmark estimation methods [16].
Overall, the module P could be denoted as:

p̂ = P(g,o; r, t), (1)

where p̂ ∈ R2 represents the estimated screen coordinate.
We first compute the intersection points between gaze

directions and the learnable screen denoted with (r, t). To



establish the screen pose, we need a normal vector n and a
point coordinate on the screen. The normal vector can be
derived using R[:, 2], i.e., the third column of the rotation
matrix [13], while t serves as a reference point on the plane.
Given that the dot product between the normal vector of a
plane and the vector connecting any point on the plane to
a fixed point is constant, it is obvious that the intersection
point p3D is

p3D = o+
(t− o) · n

g · n
g, (2)

Note that p3D represents coordinates in the camera coor-
dinate system. To convert it to the screen coordinate system,
we apply

p = R−1(p3D − t), (3)

We slightly abuse the notation p in Eq. 3, where the final 2D
gaze coordinate corresponds to the first two components of
p. These values can then be further converted into pixel
coordinates by utilizing the screen’s PPI (pixels per inch),
which is easily obtainable as a screen parameter.

Therefore, the network H2D can be denoted as

H2D(I,o;β, r, t) = P(H3D(I),o), (4)

and the objective function is denoted as

min
β,r,t

N∑
i=1

∥H2D(Ii,oi)− pi∥1 (5)

We illustrate the projection module in Figure 2.

3.3. Dynamic Pseudo-Labeling for 2D Gaze
Data augmentation is a typical technique to improve model
performance, particularly with limited dataset sizes. In this
section, we apply flipping to expand the data space. In
3D gaze estimation, the flipping involves horizontally flip-
ping face image and adjusting the label by negating the x-
coordinate value. We formally define the operation in label
as F(g). However, generating reliable pseudo labels after
flipping is challenging for 2D gaze estimation.

Our core idea is to dynamically generate pseudo-labels
during training by leveraging the differentiable projection
module within our framework, which includes learnable
screen parameters. This enables us to address the challenges
of assigning 2D pseudo-labels by reversing the projection
process, i.e., converting 2D screen coordinates into 3D gaze
directions, where we can then apply flipping in 3D space.
The pseudo-labeling function Q(p) is defined as

Q(p) = P(F(P−1(p))), (6)

where P−1 represents the reverse projection process.
Specifically, we first transform p into the camera coordi-
nate system. The gaze direction is then defined as the vec-
tor originating from the face center and directed toward the
gaze point,

p
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Figure 3. The dynamic pseudo-labeling strategy for 2D gaze in-
volves reversing the projection process to convert 2D gaze into 3D
space, where we compute pseudo-labels. To align the camera coor-
dinate system (CCS) with the unknown coordinate system (UCS),
we use the same image sets as input to both the initial and the up-
dated 3D model. The initial model, trained on the CCS, while the
updated model operates within the UCS. By leveraging the outputs
from these models as two anchors, we derive the transformation T
to align the coordinate systems. Notably, T should be invertible.

P−1(p,o) = (Rp+ t)− o, (7)

which we normalize to ensure the vector has a unit length.
However, we observed that assigning pseudo-labels as

Eq. 6 led to model collapse, with the pseudo-labels diverg-
ing to large values during training. On the other hand, we
found that H2D struggled to learn the correct screen param-
eters, and noted substantial changes in the 3D gaze estima-
tion network itself. Our intuition suggests that changing the
screen pose should theoretically allow us to find an optimal
screen pose, but this could also be approached by rotating
the camera instead, i.e., optimize H3D.

Based on the observations, we find that Eq. 6 is not con-
sistently reliable. The key insight is that human gaze direc-
tion is inherently defined in the camera coordinate system.
Flipping image affects the camera coordinate system itself,
meaning the gaze label should be adjusted accordingly, i.e.,
flipping should be performed in camera coordinate system.
However, since the 3D gaze estimation network undergoes
updates during fine-tuning, it is shifted into an unknown co-
ordinate system. This change in coordinate systems disrupts
the alignment of gaze labels, leading to model collapse.

To solve this problem, we aim to learn a transfor-
mation T that maps the unknown coordinate system to
camera coordinate system. Our idea is to identify an-
chors in the two coordinate systems, allowing us to model
this problem as an alignment task. Specifically, we de-
note the initial pre-trained 3D gaze estimation network as
H3D(;β0) and the fine-tuned network as H3D(;βk). No-
tably, H3D(;β0) is pre-trained in the camera coordinate
system, while H3D(;βk) operates in the unknown coor-



dinate system. Therefore, we can acquire the anchor as
{H3D(Ii;β0)}Ni=1 and {H3D(Ii;βk)}Ni=1 using training set
D. The alignment problem can then be formulated as:

min
T

N∑
i=1

∥T H3D(Ii;βk)−H3D(Ii;β0)∥2 (8)

Notably, T should be invertible. Therefore, we model the
transformation as a rotation operation, enabling us to solve
it using singular value decomposition (SVD). We have

[U, S, V ] = SVD(H3D(Ii;βi) ∗ H3D(Ii;β0)
T ), (9)

and T = V UT . Consequently, we can update Eq. 6 as
follows

Q(p) = P(T −1 ∗ F(T ∗ P−1(p))), (10)

where ∗ represents matrix multiplication. Q(p) is also dy-
namic and re-computed during each iteration since the coor-
dinate system continues to change throughout fine-tuning.

The objective function is denoted as

min
β,r,t

N∑
i=1

∥H2D(I′i,oi)−Q(pi)∥1 (11)

Where I′i is the flipping image of Ii.

3.4. Minimize Uncertainty across Jittered Images
We also perform color jitter and minimize uncertainty
across jittered images to enhance model robustness. Given
a face image I, we apply color jitter J to create a set of
augmented images, {Jk(I)}Kk=1, where k represents the
number of random color jitters performed. We minimize
the variance in the gaze predictions for this set. Specifi-
cally, we pass each augmented image through the model,
obtaining predictions {H2D(Jk(I))}Kk=1. We calculate the
centroid of these predictions and minimize the distance be-
tween each prediction and the centroid. Additionally, we
also minimize the distance between the predictions and the
ground truth. To stabilize training, we introduce a temporal
weight τ = t−1

t for the variance loss, starting with a smaller
weight that increases over epoch t. The loss is defined as

Lunc =
1

NK

N∑
i=1

K∑
k=1

(∥H2D(Jk(Ii))− pi∥1+

τ ∗ ∥H2D(Jk(Ii))−
1

K

K∑
j=1

H2D(Jj(Ii))∥2)

(12)
The temporal weight mitigates the risk of model collapse, as
we observe that the second term of Lunc tends to be large
at the start of training, and a high initial learning weight can
lead to instability. Additionally, we apply L2 regularization
to the second term since it assigns greater weight to outliers.

3.5. Implementation Details
Our model is optimized using the loss functions defined in
Eq. 5, Eq. 11 and Eq. 12, with corresponding weights of 1,
0.4, and 0.25, respectively. For training, we set N = 10,
meaning the training set contains 10 samples, and K = 4,
meaning we apply four random color jitter augmentations
per iteration. The model is implemented in PyTorch and
trained on an NVIDIA RTX 3090. We train for 80 epochs,
setting the learning rate initially to 0.001, with a 5-epoch
warmup phase. After 60 epochs, the learning rate decays
to 0.0005. We use GazeTR [8] (ResNet18 + 6-layer trans-
former) pretrained on Gaze360 [21] as the basic 3D model.
Please refer the supplementary material for more details.

4. Experiment
4.1. Setup
In this paper, we propose a cross-task few-shot 2D gaze es-
timation task. We first build the evaluation benchmark.
Datasets: We evaluate methods on three datasets: MPI-
IGaze [36], EVE [29], and GazeCapture [23]. These
datasets were collected in different devices, including lap-
tops, desktop computers, and mobile devices. By assessing
performance across these datasets, we demonstrate the gen-
eralization capability of methods across various devices.
Data Preprocessing: Image normalization [13] is usu-
ally used to enhance 3D gaze estimation performance.
In our work, we utilize the normalized images provided
by the MPIIGaze and EVE datasets, and implement the
method [38] for normalizing the GazeCapture. Note that,
the normalization changes 3D gaze with a rotation matrix.
Although our work does not use the 3D label, the predicted
3D gaze should be transformed back for projection. Fur-
thermore, the MPIIGaze dataset augments 3D gaze estima-
tion data by flipping images, which is not applicable for 2D
gaze estimation. We exclude the flipped images for consis-
tency. The EVE dataset provides videos along with corre-
sponding gaze trajectories. We sample one frame for every
20 frames to construct the benchmark. We sample 20 sub-
jects in GazeCapture dataset, ensuring that each has at least
500 images. We clean the dataset to remove images with-
out face. Notably, four of the 20 subjects used a tablet for
data collection, while the rest used phones. Please refer the
supplementary materials for more details.
Evaluation Metric: We perform person-specific evaluation
and report the average performance across subjects for com-
parison. Performance is measured as the Euclidean distance
(in mm) between predictions and ground truth, where lower
values indicate better accuracy.

4.2. Quantitative Comparison
We first compare our method with existing approaches
EFE [1] and IVGaze [14]. EFE is an end-to-end gaze esti-



Table 2. Quantitative evaluation. Our method achieves best result
among comparison methods. We also report the performance of
2D gaze estimation methods in the second row for reference.

Method
Training
Samples

EVE
[29]

MPIIGaze
[35]

GazeCapture
[23]

iTracker [23]

All
dataset

- - 26.8
EyeNet [29] 49.7 - -
Full-Face [36] 38.6 42.0 -
AFF-Net [4] - 39.0 19.6
EFE [1] 38.5 38.9 20.5
EFE [1] 10 64.9 ▼33% 100.2 ▼43% 48.5 ▼26%
IVGaze [14] 10 177.7 ▼75% 132.2 ▼57% 68.1 ▼47%
Ours 10 43.4 56.7 35.7

mation method that includes a projection module to convert
3D gaze predictions into 2D gaze. IVGaze utilizes a ba-
sis tri-plane for projection, followed by a lightweight trans-
former to refine the projection points. For a fair comparison,
we re-implement both methods using the same 3D gaze es-
timation network and pre-trained weights as our method.
Our goal is to evaluate the performance differences result-
ing from different projection strategies. Notably, EFE re-
quires screen calibration for the projection; to ensure fair-
ness, we set these screen parameters as learnable and ini-
tialize them with the same values used in our method. The
results of these comparisons are presented in Table 2.

IVGaze includes a transformer to refine projection
points. While this transformer performs well when trained
on the full dataset, it struggles with limited data, leading to
underfitting when trained on just 10 samples. This results
in poor performance on the EVE and MPIIGaze datasets,
highlighting the advantage of our approach. In contrast, our
method avoids the use of complex architectures that can suf-
fer from underfitting in few-shot learning tasks. Instead, we
directly model the projection process, leading to superior
performance. On the other hand, EFE demonstrates reason-
able performance, but our method achieves over 25% im-
provement across all three datasets. This significant boost is
attributed to our more comprehensive modelling of the pro-
jection process, which reduces fitting complexity and natu-
rally enhances overall performance.

We also report the performance of 2D gaze estimation
methods trained on the entire dataset for reference. Note
that they are not directly comparable to our method since
both the training and test sets differ. These results are sum-
marized in the second row of Figure 2. Our method achieves
similar performance using only 10 images.

4.3. Comparison with Different Adaption Strategy
In this section, we evaluate the accuracy of different adap-
tion strategies for obtaining 2D gaze from 3D predictions.
Direct Projection: We directly project the 3D gaze pre-
dictions from our pre-trained 3D gaze estimation network
onto the screen using the known screen pose, providing a

Table 3. Comparison with different 3D to 2D adaption strategy.
We direct project 3D gaze to 2D gaze using the known screen pose
without fine-tuning, which shows the advantage of our learning
framework. We directly learn 2D gaze from 3D gaze with MLP,
which highlights the challenges in the adaption from 3D model
to 2D gaze estimation. We also show the performance when the
learnable parameters is set as known pose in our method.

Strategy EVE MPIIGaze GazeCapture
Direct Projection 80.5 101.9 N/A
Direct Learning 180.6 133.9 74.23
Direct Learning (with o ) 116.6 108.2 149.7
Learning with Known Pose 39.4 56.6 N/A
Ours 43.4 56.7 35.7

Table 4. We perform an ablation study to evaluate the impact of
the dynamic pseudo-labeling strategy (PS-Label) and the loss to
minimize uncertainty across jittered images (Lunc). Both the two
modules contribute to performance improvements.

Proj. PS-Label Lunc EVE MPIIGaze GazeCapture
✓ 46.6 60.3 36.8
✓ ✓ 45.3 57.9 35.7
✓ ✓ ✓ 43.4 56.7 35.7

baseline performance measure for the network. This is not
performed on GazeCapture, as it lacks reliable screen pose.
Direct Learning: We retain the architecture of the 3D gaze
network and directly fine-tune it using the 2D annotations.
Additionally, we concatenate the gaze origin o with the pre-
dicted gaze and use a MLP to map them to 2D gaze predic-
tions. We then fine-tune this extended network and report
the performance in Direct Learning (with o).
Learning with Known Pose: Our method assumes the
screen pose is unavailable. In this strategy, we change the
learnable parameters as the ground truth screen pose.

The result is shown in Table 3. The Direct Projection
method struggles to perform effectively on the EVE and
MPIIGaze datasets without fine-tuning. However, integrat-
ing it into our framework yields over 40% improvement,
demonstrating the critical role of our learning framework.
The Direct Learning strategy, on the other hand, fails to
achieve reasonable performance due to the substantial do-
main gap between 3D and 2D gaze estimation. We compare
its performance with Direct Projection. The learning strat-
egy does not show any performance gains, which highlights
the challenge of adapting 3D gaze models to 2D tasks. Even
when the gaze origin is included as an additional feature,
the limited training data makes it challenging for the model
to learn the complex mapping. In contrast, our framework
leverages physics-based differentiable projection, enabling
it to achieve superior performance. The Learning with
Known Pose method outperforms our method due to access
to the known screen pose, highlighting the importance of
accurate screen pose information for 2D gaze estimation.



60.3

46.6

36.8

60.2

48.6
51.4

100

61

34.3

56.7

43.4

35.7

MPIIGaze EVE GazeCapture
20

40

60

80

100

E
u

cl
id

ea
n

 d
is

ta
n

ce
 (

m
m

)  w/o Pseudo-Label

 RAT (Rotation)

 Ours (w/o T )

 Ours

1

T

Figure 4. We compare the performance across different pseudo-
labelling strategies. The red bar represents the projection with-
out pseudo-labelling, serving as a baseline for comparison. We
implemented RAT [5], which show no performance improvement
over the baseline. Additionally, we evaluated our method without
the transformation T . In this case, the unreliable pseudo-labels
resulted in a significant performance drop on the MPIIGaze and
EVE datasets. Interestingly, omitting T led to improved results
on the GazeCapture dataset. We found that this was because the
initial screen pose happened to be same as the actual screen pose.

4.4. Ablation Study

We perform an ablation study to demonstrate the contri-
bution of each module in our work. We first evaluate the
performance when only the projection module is added to
the pre-trained 3D gaze estimation network and fine-tuned.
The results are shown as Proj. in Table 4. Compared to
the results in Table 3, the projection module provides a sig-
nificant performance improvement as it explicitly modelling
the projection process, which effectively bridges the gap be-
tween 3D and 2D gaze estimation. Next, we introduce our
dynamic pseudo-labeling strategy and minimize the uncer-
tainty across jittered images. Both mechanisms bring per-
formance improvements across all datasets.

The dynamic pseudo-labeling strategy is a key contri-
bution of our work. To better understand its impact, we
conduct a detailed comparison, as shown in Figure 4. We
perform an ablation on the learning transformation T in our
strategy. The results show a significant performance drop
on the MPIIGaze and EVE datasets without T , as unreli-
able pseudo-labels can cause model collapse during learn-
ing, especially with small training dataset sizes. Interest-
ingly, we observe improved performance on the GazeCap-
ture dataset without using T . The authors of GazeCapture
create a unified prediction space for 2D gaze, centered at
the phone camera position. Our model initializes the screen
pose as t = (0, 0, 0), making the initial pose closely ap-
proximate the real one. However, it is important to note
that such cases are uncommon in real-world scenarios. Our
method first converts 2D gaze to 3D space and learns T to
align this space with the camera coordinate system. When
the screen pose aligns exactly with ground truth, the 3D
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Figure 5. Performance with dif-
ferent number of training images.

#Training
Images

Speed
(sec/epoch)

3 0.89
5 0.90
10 0.91
20 0.96
50 1.16

Table 5. The model training
time with different number
of training samples.

space already corresponds to the camera coordinate sys-
tem. To establish the alignment, we use the predictions
from the 3D gaze network as anchors for the camera co-
ordinate system, which may introduce some bias. Nonethe-
less, our method demonstrates performance improvements
compared to methods without pseudo-labeling.

We also implement existing method RAT [5], which as-
signs pseudo-label for rotated images. We convert 2D gaze
into 3D gaze using learnable screen parameters, and per-
form RAT to augment training. RAT cannot bring perfor-
mance improvement compared with the baseline.

4.5. Different Numbers of Training Images
In this section, we evaluate the effect of the number of train-
ing images on model performance. We experiment with
different numbers of training images set to 3, 5, 10, 20,
and 50, respectively. The performance is assessed across all
three datasets, with results depicted in Figure 5. As shown,
increasing the number of training images consistently im-
proves the model performance.

Additionally, we measure the model training time when
using varying numbers of training images, as summarized
in Table 5. On average, each epoch takes approximately 0.9
seconds to process. Since our method does not require a
large dataset, all images can be efficiently processed within
a single epoch. With a total of 80 epochs, the complete
training time is approximately 1.2 minute. Notably, this
timing was tested in a Python environment and could be
further optimized to achieve even faster performance with
specific optimizations. This demonstrates significant real-
time application potential for our method.

4.6. Repeatability Experiment
In this section, we conduct a robustness evaluation by train-
ing our method 10 times using different training samples
in MPIIGaze to assess the impact of sample variability on
model performance. We evaluate the performance on all
15 subjects for each trial and report the performance dis-
tribution. The results are visualized in a boxplot in Fig-
ure 6. The horizontal axis represents each of the 10 trials
and each trial contains performance of 15 subjects. The box
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Figure 6. We train our method 10 times using different image
samples in MPIIGaze for robustness evaluation. The horizontal
axis corresponds to each of the 10 trials, while each bar shows
the accuracy distribution across 15 subjects. The box depicts the
interquartile range (25% to 75%), while the error bars covers the
entire accuracy distribution. The average accuracy across 10 trials
is 55.6, demonstrating the stability and robustness of our method.

depicts the interquartile range (25% to 75%), while the error
bars cover the entire performance distribution. The triangle
symbol indicates the average performance, and the black
line represents the median performance. The average per-
formance across all 10 trials is 55.6, which is slightly better
than our previously reported value of 56.7. These results
demonstrate the stability and robustness of our method de-
spite variations in the training samples.

4.7. The Trajectories of Pseudo-Label

Our method contains a dynamic pseudo-labeling strategy to
assign pseudo 2D labels for flipped images. To gain deeper
insights into this process, we visualize the trajectories of the
pseudo-labels over the course of 80 epochs in Figure 7. In
addition, we compare the effect of our transformation strat-
egy by plotting the pseudo-label positions without the trans-
formation, i.e., the difference between Eq. 6 and Eq. 10.
Both approaches share the same initial pseudo-labels. For
reference, we also compute the ground truth labels using the
calibrated screen pose for flipped images.

As shown in Figure 7, the initial pseudo-labels have
a significant offset from the ground truth. However, our
method dynamically updates the pseudo-labels based on the
fine-tuned network, progressively aligning them closer to
the ground truth with each iteration. By the end of train-
ing, the pseudo-labels have only minimal offsets from the
ground truth, demonstrating the effectiveness of our ap-
proach. In contrast, the strategy without transformation fails
to produce reliable pseudo-labels, leading to consistently
large offsets from the ground truth. This comparison high-
lights the importance of our dynamic transformation mech-
anism in improving labelling accuracy.
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Figure 7. We visualize four trajectories of the pseudo-labels in our
dynamic pseudo-labeling strategy. The ground truth for flipped
images is computed using known screen pose. It is evident that our
method progressively aligns the pseudo-labels closer to the ground
truth. Additionally, we plot the pseudo-labels without applying T
in our strategy, which shows a failure to produce reliable pseudo-
labels, resulting in significant deviations from the ground truth.

5. Conclusion and Discussion
In this work, we introduce a novel cross-task few-shot 2D
gaze estimation method. By leveraging few-shot 2D sam-
ples, we adapt a 3D gaze model to 2D gaze estimation on
unseen devices. Since the 3D gaze network is trained in
3D space without being tied to specific devices, it theoret-
ically maintains robust performance across different plat-
forms. Our experiments validate this by proving results on
three datasets. Besides, the adaption is rapid and source-
free, significantly broadening its practical applicability.
Limitation: Our method infers 2D gaze through mathe-
matical derivation within the differentiable projection mod-
ule. While this approach enhances model interpretability
and reliability, it can occasionally result in failure cases.
For instance, when the input images lack visible faces, the
predicted 3D gaze can become erratic. In such scenar-
ios, the intersection point between the 3D gaze vector and
the screen plane may significantly deviate from the ground
truth. This issue arises because, unlike neural networks that
constrain outputs to a plausible range, a purely mathemati-
cal projection may yield extreme values, e.g., when the 3D
gaze is nearly parallel to the plane. Although these cases
can be easily flagged in real-world applications, they may
introduce biases during evaluation.
Future Directions: In this paper, we address the challenge
of 2D pseudo-labeling. However, several open questions re-
main. For instance, can we leverage unlabeled face images
to further enhance performance? Traditional methods often
utilize a standard calibration pattern, could we incorporate
a similar strategy? It is worth noting that our approach re-
quires collecting samples initially, akin to a calibration pro-
cess. We argue that this step is essential as it provides the
necessary anchors for adapting to unseen devices. Nonethe-
less, exploring user-unaware calibration techniques is also a
promising direction for future research.
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6. Summary of Evaluation Datasets
Our work conducts experiments on three datasets: MPI-
IGaze, which is also referred to as MPIIFaceGaze, EVE,
and GazeCapture. We preprocess these datasets for evalua-
tion. The dataset statistics are summarized in Table 6. No-
tably, GazeCapture includes over 1,000 subjects, making it
impractical to evaluate all subjects. Therefore, we sort all
subjects based on their identifiers, e.g., sub 00001, and se-
lect the 20 subjects in ascending order of their identifiers.
We exclude subjects with fewer than 500 images to ensure
a convincing evaluation.

Overall, under the experimental settings, our method was
evaluated on 74 subjects across three different platforms,
demonstrating its advantages and robustness.

Table 6. Dataset statistics on our experiment

Devices # Subjects # Images per subject
EVE Desktop computer 39 ∼ 1800
MPIIGaze Laptop 15 1500
GazeCapture Phone & tablet 20 ∼ 1200

Besides, we perform image normalization during data
preprocessing. The original method requires camera in-
trinsic parameters for normalization, which conflicts with
one of our motivations: enabling quick adaptation for non-
expert users. In our method, this issue is resolved by using
estimated camera intrinsic parameters. For the GazeCap-
ture dataset, we apply estimated parameters for normaliza-
tion. We do not provide detailed explanations of this in our
manuscript, as it is not a central focus of our work and can
be addressed effectively.

7. Implementation Details
Our work is primarily implemented using two libraries: Py-
Torch and PyTorch3D. Most of our modules are developed
using PyTorch, while the Rodrigues transformation is im-
plemented using PyTorch3D. The Rodrigues transformation
ensures that R ∈ SO(3), facilitating the computation of the
inverse matrix for coordinate transformations. We initial-
ize the rotation matrix R as diag(-1, 1, -1) and the trans-
lation vector t as (0, 0, 0), where the value of r could be
computed using Rodrigues formula. This represents a basic
transformation between the camera coordinate system and
the screen coordinate system, i.e., we assume that the ori-
gins of the two systems overlap, and the x-y planes of the
two systems are parallel.

This is also why we claim that the initial screen pose
happened to be same as the actual screen pose in the Gaze-

Capture dataset. The dataset collects images using mobile
devices, where the x-y planes of the embedded camera are
typically parallel to the screen. More importantly, the au-
thors of GazeCapture precisely measure the camera place-
ment and screen dimensions to define a unified prediction
space, setting the origin of the defined screen coordinate
system at the camera position. However, this setup is atypi-
cal, as manually measuring the camera placement is equiv-
alent to manually calibrate screen pose.

8. Implementation on the Real-World Device

We also evaluate our method in a real-world environment.
Specifically, we implement our method at a desktop com-
puter and invite a volunteer for testing. Our implementa-
tion is conducted on the machine equipped with an NVIDIA
RTX 3090 GPU in a Python environment. We use a 1080p
webcam to capture the face images and applied our method
to estimate the user’s 2D gaze on the screen. The experi-
mental setup is illustrated in Figure 8, with the user posi-
tioned approximately 90 cm from the camera.

Figure 8. Setup for the implementation on the real-world device.

The process involves the following steps:
1. Calibration: The volunteer is required to look at four cal-

ibration points on the screen. For each point, we collect
40 face images for model adaptation while the volunteer
focuses on each point for 1-2 seconds. We collect 40
images from each point to minimize the impact of noise
data such as blink.

2. Data Pre-Processing: From these images, we detect hu-
man face landmarks and estimate the 3D head pose to
compute the 3D face centers. Image normalization is
then applied to obtain the processed face images.

3. Model Adaptation: Using our method, we adapt the 3D
gaze estimation model for the real-world 2D gaze esti-
mation.
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Figure 9. The visualization of our estimation in a real-world im-
plementation. The red line represents the trajectory of a moving
dot that we pursued, while the blue dots indicate our gaze predic-
tions. This result demonstrates the effectiveness of our method.
The jitter is due to various environmental and personal factors,
such as eye blinking and unstable face detection. These issues can
be easily addressed using post-processing methods.

4. Evaluation: The volunteer is instructed to continuously
focus on a moving dot. Our method estimates the gaze
trajectory from face images.
We visualize the results in Figure 9, where the red line

represents the trajectory of the moving dot, and the green
dots indicate the gaze estimation results. It is important to
note that we do not pre-calibrate the camera intrinsic ma-
trix or the screen pose. Besides, we do not apply post-
processing methods, such as blink detection or filtering, to
the estimation results. A video of the entire process is pro-
vided as supplementary material.
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